EVATEL Study

Remote follow-up of patients implanted with an ICD The prospective randomized EVATEL study

Philippe Mabo, Pascal Defaye, Nicolas Sadoul, Jean Marc Davy, Jean-Claude Deharo, Salem Kacet, Eric Bellissant, Jean Claude Daubert

Sponsor : Rennes University Hospital, France Grant : French Ministry for Health

Disclosures

- Biotronik: research grants, consulting
- Boston Guidant: research grants, consulting
- Medtronic: research grants, consulting
- St Jude Medical: research grants, consulting
- Sorin: speaker, research grants, consulting

Background

- Implantable cardioverter defibrillator (ICD) reduces mortality in selected patients.
- Expending indications result in increasing number of implantations with impact on follow-up strategy and health-care organisation.
- Currently, regular in-office follow-up is recommended every 3 months.
- In this context, remote monitoring appears to be a promising technique, allowing to get information about device status and delivered therapies without the need for in-office visit.

Aims of the study

• To evaluate safety and efficiency of ICD remote FU as compared to conventional in-office FU

Cost/effectiveness evaluation

Study design

- Randomized, prospective, open-label multicentre
 French trial
- Two groups
 - Control : conventional in-office follow-up

at the implant centre every 3 months

- Remote follow-up: remote transmission to the implant centre every 3 months
- In office visit at 6 weeks and 12 months for all patients
- One-year FU

Selection criteria

- Inclusion criteria
 - Adults over 18 years
 - First implantation of a single or dual chamber ICD
 - Primary or secondary prevention indication
 - ICD device with data transmission features
 - Phone network compatible with remote transmission
 - Ability to correctly use the transmission system
 - Written inform consent
- Exclusion criteria
 - NYHA class IV
 - Life expectancy < 1 year</p>
 - CRT indication

Primary endpoint

- Combined clinical endpoint
- Rate of major cardiovascular events (MCE) occurring during the first year after ICD implantation
 - **Death (all causes)**
 - Hospitalization for a cardiovascular event
 - **Ineffective therapy**
 - **Inappropriate therapy**

Main secondary endpoints

- Time to first MCE
- Time to all-cause death
- Rate of cardiovascular hospitalisation
- Rate of ineffective or inappropriate ICD therapies
- Cost/effectiveness analysis: pending

Sample size

- Expected rate of MCE in the control group : 20%
- Power : 80% Risk : 5%
- Non inferiority hypothesis: evaluated on the 95% confidence interval of the MCE rate difference between the 2 groups with a non-inferiority margin of 5%

Calculated sample size : 1600 patients

Flow chart

ICD manufacturers and types

		Control n = 750	Remote n = 749*
Manufacturer	Biotronik	315 (42.0%)	308 (41.1%)
	Boston-Guidant	40 (5.3%)	35 (4.7%)
	Medtronic	229 (30.5%)	237 (31.6%)
	St Jude Medical	166 (22.1%)	169 (22.6%)
Туре	Single chamber	503 (67.1%)	488 (65.2%)
	Dual chamber	247 (32.9%)	261 (34.8%)

*all implanted devices

Reasons for Cross-over

	Control n = 1	Remote n = 55
Unexpected phone network not compatible with remote transmission	_	32 (58.2%)
Patient unable to use correctly the transmission system	_	6 (10.9%)
Patient wish	1 (100.0%)	4 (7.3%)
Patient condition requiring conventional close follow-up	_	2 (3.6%)
Unknown	—	1 (1.8%)
Other	_	10 (18.2%)

Data are numbers of patients (percentages)

Patient Baseline Characteristics (1)

	Control n = 750	Remote n = 751	p value
Gender, male	628 (83.7%)	646 (86.0%)	0.2166
Age, years	59 ±13	60±13	0.1654
ICD indication Primary prevention Secondary prevention	481 (64.1%) 269 (35.9%)	489 (65.1%) 261 (34.8%)	0.6656
Documented ventricular	373 (49.7%)	355 (47.3%)	0.3397
Ventricular fibrillation	101 (13.5%)	81 (10.8%)	0.1116
History of atrial arrhythmia	142 (18.9%)	179 (23.8)	0.0206

Population Characteristics (2)

	Control n = 750	Remote n = 751	p value
Underlying disease Structural heart disease Electrical disease Structural heart disease etiologies Ischemic heart disease	681 (90.9%) 68 (9.1%) 467 (62.3%)	700 (93.5%) 49 (6.5%) 479 (64.0%)	0.0673
NYHA class I II III	262 (35.7%) 370 (50.5%) 101 (13.8%)	231 (31.4%) 394 (53.5%) 111 (15.1%)	0.2051
LVEF < 35% ≥ 35%	412 (56.4%) 318 (43.6%)	436 (59.6%) 295 (40.4%)	0.2144
Heart failure hospitalisation (within 1 year before inclusion)	141 (18.9%)	179 (23.8%)	0.0185
Chronic associated diseases Arterial hypertension Diabetes Chronic respiratory disease Chronic renal failure	284 (37.9%) 154 (20.5%) 98 (13.1%) 41 (5.5%)	310 (41.3%) 163 (21.7%) 113 (15.0%) 50 (6.7%)	0.1832 0.5784 0.2698 0.3336

Primary endpoint (1)

(Death/ CV hospitalisation/ Ineffective or inappropriate therapy)

Intent to treat analysis (N=1480)

	Control n = 739	Remote n = 741	р	
Number of patients with at least 1 MCE	210 (28.4%)	214 (28.9%)	NG	
95% CI	[25.2 to 31.7]	[25.6 to 32.1]	CNI	

Non-inferiority hypothesis

Difference (95% CI)	0.5 % [- 4.1 to 5.1]	p = 0.0101

Primary endpoint (2)

(Death/ CV hospitalisation/ Ineffective or inappropriate therapy)

Per protocol analysis (N=1434)

	Control n = 738	Remote n = 696	р
Number of patients with at least 1 MCE	210 (28.5%)	210 (30.2%)	NG
95% CI	[25.2 to 31.7]	[26.8 to 33.6]	Cri

Non-inferiority hypothesis

Difference (95% CI)	1.7% [- 3.0 to 6.4]	p = 0.0026
		-

Primary endpoint (3)

MCE rate difference (%) between the 2 groups (95% CI)

Time to first major cardiovascular event

Time to all-cause death

Log-rank : X² = 1.0147, p = 0.3138 (NS)

— Remote

Secondary endpoints

	Control n = 738	Remote n = 696	p value
Hospitalization for a cardiovascular event	152 (20.6%)	172 (24.7%)	0.0625
Inappropriate or ineffective therapy	60 (8.1%)	38 (5.5%)	0.0452
Inappropriate therapy	55 (7.5%)	33 (4.7%)	0.0325

Data are numbers of patients (percentages)

Study limitations

- Enrollment inferior to the calculated sample size inclusion period limited to 2 years
- Some differences at baseline between the 2 groups with possibly sicker patients in the remote group
- Cross-over from remote to control group mainly due to unexpected phone network connexion problem
- Short follow-up

Conclusions

- EVATEL is the first controlled trial aimed at assessing the impact of ICD remote f/u on clinical outcomes
- The non-inferiority hypothesis between the two groups was not validated
- Nevertheless, a difference between groups on the primary endpoint has not been demonstrated
- No difference in survival
- Significant reduction of inappropriate therapies in the remote group
- Results do not question the place of ICD remote FU as a safe alternative to in office FU but no impact on the prevention of major clinical events was demonstrated
- Health care utilization: pending

Thanks to all investigation centres

Dr Alain AMIEL, CHU Poitiers Pr Frédéric ANSELME, CHU Rouen **Dr Claude BARNAY, CH Aix en Provence** Pr Jean-Jacques BLANC, CHU Brest Dr Patrick BLANC, CHU Limoges **Dr Florent BRIAND, CHU Besancon** Pr Jean Pierre CAMOUS, CHU Nice Pr Michel CHAUVIN, CHU Strasbourg **Pr Philippe CHEVALIER, HC Lyon Pr Jacques CLEMENTY, CHU Bordeaux Pr Pierre COSNAY, CHU Tours** Pr Antoine DA COSTA, CHU St Etienne Pr Jean-Marc DAVY, CHU Montpellier Pr Jean-Claude DEHARO, APH Marseille Dr Pascal DEFAYE, CHU Grenoble

Dr Jean-Marc DUPUIS, CHU Angers Dr Nathalie ELBAZ, APH Paris Dr Robert FRANK, Dr Françoise LUCET, APH Paris Dr Laurence GUEDON-MOREAU, CHU Lille Dr Gabriel LAURENT, CHU Dijon **Pr Antoine LEENHARDT, APH Paris Pr Jean-Yves LE HEUZEY, APH Paris** Pr Hervé LE MAREC, CHU Nantes **Dr Yannick SALUDAS, CHU Clermont-Ferrand** Pr Patrick MESSNER PELLENC, CHU Nîmes Pr. Damien METZ, CHU Reims **Pr Nicolas SADOUL, CHU Nancy** Dr Michèle SALVADOR-MAZENQ, CHU Toulouse **Dr Patrice SCANU, CHU Caen**

