One-Year Clinical and Angiographic Outcomes from the RESET Trial

Randomized Evaluation of

Sirolimus-eluting versus Everolimus-eluting stent Trial

Takeshi Kimura, MD

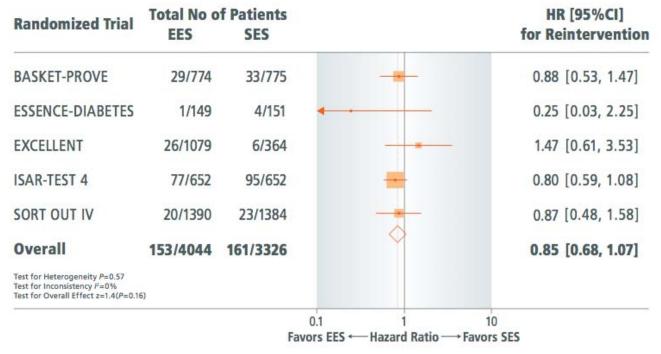
Kyoto University Graduate School of Medicine

Takeshi Morimoto, MD, MPH; Keiichi Igarashi, MD; Kazushige Kadota, MD; Kengo Tanabe, MD; Yoshihiro Morino, MD; Takashi Akasaka, MD; Yoshiki Takatsu, MD; Hideo Nishikawa, MD; Yoshito Yamamoto, MD; Yoshihisa Nakagawa, MD; Yasuhiko Hayashi, MD; Masashi Iwabuchi, MD; Hisashi Umeda, MD; Hisayuki Okada, MD; Kazuo Kimura, MD; Kazuya Kawai, MD; and Ken Kozuma, MD **On behalf of the RESET Investigators**

Takeshi Kimura, MD

Scientific advisory boards for and honoraria from Abbott Vascular, Cordis Cardiology, and Terumo Company.

Study Sponsor of the RESET Study

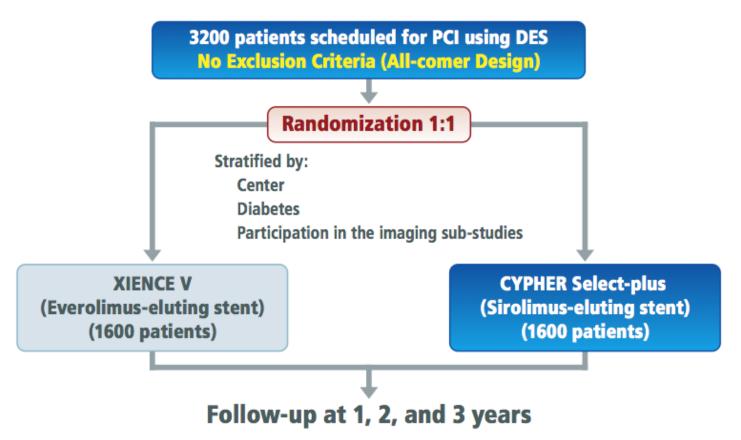

Abbott Vascular

Backgrounds

Several recent randomized trials suggested similar one-year clinical outcomes between everolimus-eluting stent (EES) and sirolimus-eluting stent (SES).

However, none of these trials was adequately powered to evaluate the efficacy outcomes after stent implantation such as TLR or TVR.

Forest Plot with Hazard Ratio for Target Vessel Revascularization


Kastrati A, et al. Circ Cardiovasc Interv. 2011;4: e-pub ahead of print.

RESET Trial

(Randomized Evaluation of Sirolimus-eluting versus Everolimus-eluting stent Trial)

Non-inferiority Trial of New Generation DES Against Standard Care DES

Imaging Sub-studies at 8-12 months:

Angiography (500 patients), IVUS/OCT (120 patients), Endothelial function (100 patients)

(Scheduled follow-up angiography by local site protocol was allowed beyond 240 days.)

RESET: Study Organization

Steering Committee

Takeshi Kimura (PI) Keiichi Igarashi Kazushige Kadota Ken Kozuma Kengo Tanabe Yasuhiro Morino

Clinical Event Committee

Junya Ako Toshihiro Tamura Yoshihisa Nakagawa Kiyoshi Hibi Yutaka Furukawa

Statistical Analysis

Takeshi Morimoto

DSMB

Tadanori Aizawa Takaaki Isshiki Takahiko Suzuki Shinsuke Nanto Masakiyo Nobuyoshi Kazuaki Mitudo Tetsu Yamaguchi

Coordinating Center

Research Institute for Production Development, Kyoto, Japan Naoko Okamoto Miya Hanazawa Kumiko Kitagawa

Angiographic Core Laboratory

Cardiocore, Tokyo, Japan Ken Kozuma

Investigators

Toyota Memorial Hospital	Hisashi Umeda		Kansai Rosai Hospital	Masaaki Uematsu	Masaki Awata
Nagoya Kyoritsu Hospital	Toru Aoyama		Hyogo Prefectural Amagasaki Hospital	Yoshiki Takatsu	Ryoji Taniguchi
Fujita health university hospital	Yukio Ozaki	Horoyuki Naruse	Hyogo College of Medicine Hospital	Motomaru Masutani	
Matsusaka Chuo General Hospital	Masatoshi Miyahara		Tenri Hospital	Yoshihisa Nakagawa	Hirokazu Kondo
Nagai Hospital	Kozo Hoshino		Nara Medical University Hospital	Shiro Uemura	Kenichi Ishigami
Mie University Hospital	Takashi Tanigawa		Japanese Red Cross Society Wakayama Medical Center	Takashi Tamura	Hiroki Sakamoto
Mie Heart Center	Hideo Nishikawa	Hiroyuki Suzuki	Wakayama Medical University Hospital	Takashi Akasaka	Hironori Kitabata
Yokkaichi Social Insurance Hospital	Masaki Kawamura		Tottori University Hospital	Masahiko Kato	Yoshiyuki Furuse
Koto Memorial Hospital	Teruki Takeda		Matsue Red Cross Hospital	Kinya Shirota	Asao Mimura
Shiga University of Medical Science Hospital	Takashi Yamamoto		The Sakakibara Heart Institute of Okayama	Keizou Yamamoto	Hiroyuki Takinami
Kyoto University Hospital	Takeshi Kimura	Hiroki Shiomi	Kurashiki Central Hospital	Kazushige Kadota	Hiroyuki Tanaka
Mitsubishi Kyoto Hospital	Shinji Miki	Tetsu Mizoguchi	Kawasaki Medical School Hospital	Hiroyuki Okura	Yoji Neishi
National Hospital Organization Kyoto Medical Center	Mitsuru Abe		Okayama University Hospital	Hiroshi Ito	Yoshiki Hata
Kyoto Second Red Cross Hospital	Hiroshi Fujita		Hiroshima City Hospital	Masaharu Ishihara	Kazuoki Dai
Sakurabashi Waranabe Hospital	Kenishi Fujii		Fukuyama Cardiovascular Hospital	Seiichi Haruta	Hideo Takebayashi
	0	harmhing Orange	Tsuchiya General Hospital		Mamoru Toyofuku
Osaka City General Hospital Osaka Saiseikai Noe Hospital	Akira Itoh Shunsuke Take	kazuhiro Osawa Shiho Koyama	Chikamori Hospital	Kazuya Kawai	Syuuichi Seki
Osaka City University Hospital	Minoru Yoshiyama	Satoshi Nishimura	Unversity Of Occupational And Environmental Health Japan	Shinio Sonoda	Yoshitaka Muraoka
Osaka Red Cross Hospital	Tsukasa Inada	Fujio Hayashi		Shinjo Sonoda	
National Cerebral and Cardiovascular Center	Hiroshi Nonogi	Eiji Tada	Kurume University Hospital	Takafumi Ueno	Seiji Kanaya
	Throshi Nonogi		Kokura Memorial Hospital	Masashi Iwabuchi	Shinichi Shirai
Sumitomo Hospital	Yuji Yasuga	Nobuhiro Mitsusada	Kouseikai Hospital	Yoshihiro Iwasaki	
Higashisumiyoshi Morimoto Hospital	Yuji Sakanoue		Saiseikai Kumamoto Hospital	Koichi Nakao	
Kansai Denryoku Hospital	Katsuhisa Ishii	Kazuaki Kataoka	Kumamoto Rousai Hospital	Toshiyuki Matsumura	Sei Nakata
Kobe City Medical Center General Hospital		Makoto Kinoshita	Miyazaki Medical Association Hospital	Yoshisato Shibata	Nehiro Kuriyama
Kobe University Hospital	Junya Shite	Hirotoshi Hariki	Kagoshima Medical Center	Hitoshi Nakashima	Yasuhisa Iriki

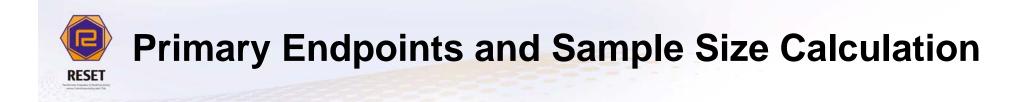
Investigators

Caress Sappro Tokeidai Memorial Hospital Teine Keijinkai Hospital Cardio-vascular Center Hokkaido Ohno Hospital **Caress Sappro Hokko Memorial Hospital** Hokkaido Social Insurance Hospital **Aomori Prefectural Central Hospital Iwate Prefectural Central Hospital Iwate Medical University Hospital** Sendai Kosuei Hospital **Tohoku Kousei Nenkin Hospital** Sendai Open Hospital Iwaki Kyoritsu General Hospital Fukushima Medical University Hospital Hoshi General Hospital **Ohta Nishinouchi Hospital** Saiseikai Kurihashi Hospital Saitama Cardiovascular And Respiratory Center Dokkyo Medical University Koshigaya Hospital Jikei University Kashiwa Hospital Juntendo University Hospital Sakakibara Memorial Hospital NTT Medical Center Tokyo The Cardiovascular Institute Hospital Mitsui Memorial Hospital Tokyo Medical University Hospital

Kazushi Urasawa Ryoji Koshida Mitsugu Hirokami Takehiro Yamashita Masato Nagashima Yoichi Nozaki Keiichi Igarashi Jungo Furuya Fuminobu Yukinori Sakamoto Yoshimachi Akihiro Nakamura Tomonori Itoh Kaname Takizawa Naoto Inoue Yoshiaki Katahira Takao Nakano Atsushi Kato Yoshito Yamamoto Tomohiro Tada Yasuchika Takeishi Kazuhiko Nakazato Mikihiro Kijima Yuichi Ujiie Goro Ishida Nobuo Komatsu Yoshimi Ota Atsushi Honda Makoto Muto Tetsuya Ishikawa Takaaki Komatsu Mitsuyuki Shimizu Yoshiki Uehara Hiroyuki Daida Katsumi Miyauchi Tetsuya Sumiyoshi Ryuta Asano Masao Yamasaki Junji Yajima Ryuichi Funada Kengo Tanabe Masanori Taniwaki

Nobuhiro Tanaka

Masashi Ogawa


Teikyo University Hospital Akiyoshi Miyazawa Ken Kozuma Nobuaki Suzuki Tokyo Women's Medical University Hospital Nobuhisa Hagiwara Fumiaki Mori The Jikei University Hospital Takayuki Ogawa Kazuo Ogawa Juntendo University Nerima Hospital Masataka Sumiyoshi Shinya Okazaki Tokyo Metropolitan Hiroo General Hospital Tamotsu Tejima Yasuhiro Tanabe St. Luke's International Hospital Yutaro Nishi Itabashi Chuo General Hospital Hiroshi Ohta Saiseikai Yokohama-city Eastern Hospital Toshiya Muramatsu Hiroshi Ishimori Yokohama Rosai Hospital Kenichi Kato Kazuhiko Yumoto **Tokai University Hospital** Yoshihiro Morino Yokohama City University Medical Center Kazuo Kimura Kiyoshi Hibi Kitasato University Hospital Taiki Tojo Takao Shimohama Kanazawa Cardiovascular Hospital Masanobu Namura Yuki Horita Jong-Dae Lee Akira Nakano University of Fukui Hospital Fukui Cardio Vascular Center Sumio Mizuno Katsushi Misawa Juntendo University Shizuoka Hospital Satoru Suwa Tomoya Onodera Shizuoka City Shizuoka Hospital Ryosuke Takeuchi Osamu Doi Shizuoka General Hospital Satoshi Kaburagi Okamura Memorial Hospital Yasuhiro Tarutani Seirei Hamamatsu General Hospital Hisayuki Okada Yohei Takayama Hamamatsu Medical Center Masakazu Kobayashi **Toyohashi Heart Center** Takahiko Suzuki Masashi Kimura Aichi Medical University Hospital Takayuki Ito Hiroaki Takashima **Tosei General Hospital** Hiroshi Asano Nagoya Daini Red Cross Hospital Haruo Hirayama Mamoru Nanasato Yasushi Tatematsu

•Primary Clinical Endpoint for Efficacy:

Any Target-lesion Revascularization at 12 months

 Estimated event rate at 12 months: Sirolimus-eluting stent group: 6.9% (j-Cypher registry)
Non-inferiority margin of 3.4% and one-sided type I error of 0.025
3000 patients would yield > 95% power to detect non-inferiority.
90% power to detect superiority with 2.7-percentage-point difference between the stent types at a level of one-sided type 1 error of 0.025

• Primary Clinical Endpoint for Safety: Death or Myocardial Infarction at 3 years

•Estimated event rate at 3 years:

Sirolimus-eluting stent group: 12.2% (j-Cypher registry)

Non-inferiority margin of 4.3% and one-sided type I error of 0.025

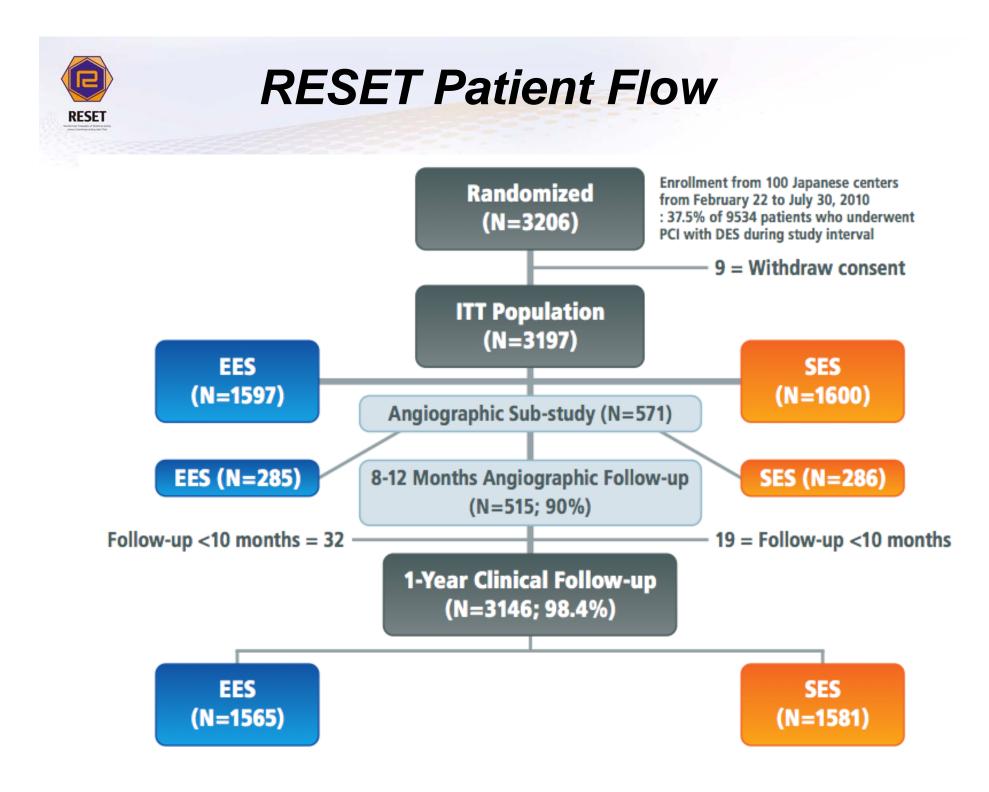
3000 patients would yield 91% power to detect non-inferiority.

 A total of 3200 patients were to be enrolled considering possible drop-out during follow-up.

Angiographic Primary Endpoint and Sample Size Calculation

• Primary Angiographic Endpoint:

In-segment Late Loss at 8-12 Months


• Estimated in-segment late loss at 8-12 months:

Sirolimus-eluting stent group: 0.20 ± 0.50 mm (Cypher PMS Japan)

Non-inferiority margin of 0.195 mm (SPIRIT III trial) and one-sided type I error of 0.025

400 patients would yield 97% power to detect non-inferiority.

 A total of 500 patients were to be enrolled considering possible drop-out from the follow-up angiography. Due to the need for further patient enrollment in the endothelial function sub-study, a total of 571 patients were ultimately enrolled in the angiographic sub-study.

Baseline Patient Characteristics

	EVEROLIMUS-ELUTING STENT	SIROLIMUS-ELUTING STENT	p value
No. of patients	1597	1600	
Age (years)	68.9±9.7	69.3±9.6	0.33
Male gender	78%	76%	0.33
Body mass Index (kg/m²)	24.2±3.6	24.3±3.5	0.5
Diabetes	45%	45%	0.61
Insulin-treated	11%	10%	0.48
Hypertension	79%	81%	0.41
Current smoker	21%	20%	0.77
Statin use	77%	77%	0.99
Prior PCI	47%	51%	0.06
Prior CABG	3.9%	6.2%	0.003

Baseline Patient Characteristics

	EVEROLIMUS-ELUTING STENT	SIROLIMUS-ELUTING STENT	p value
No. of patients	1597	1600	
Clinical diagnosis			0.08
Acute myocardial infarction	6.5%	5.2%	
Unstable angina	11%	13%	
Stable coronary artery disease	82%	82%	
Prior myocardial infarction	29%	31%	0.35
Prior stroke	11%	10%	0.29
Heart failure	13%	13%	0.9
Hemodialysis	5.8%	5.0%	0.3
Peripheral vascular disease	9.0%	8.6%	0.7
Multivessel disease	47%	47%	0.77
SYNTAX score	11.3±7.4	11.1±7.1	0.6
	(N=1132)	(N=1131)	

Baseline Lesion Characteristics

	EVEROLIMUS-ELUTING STENT	SIROLIMUS-ELUTING STENT	p value
No. of lesions	1967	1960	
Target vessel location			0.16
LMCA	2.4%	1.8%	
LAD	43%	43%	
LCx	22%	23%	
RCA	32%	31%	
Graft	0.4%	1.0%	
STEMI culprit lesions	3.8%	2.8%	0.08
Bifurcation lesions	18%	19%	0.5
Chronic total occlusion	6.2%	6.0%	0.86
In-stent restenosis	11%	11%	0.57
Reference vessel size <= 2.75 m	m 64%	65%	0.47
Lesion length > 18 mm	34%	33%	0.83

Procedural Characteristics

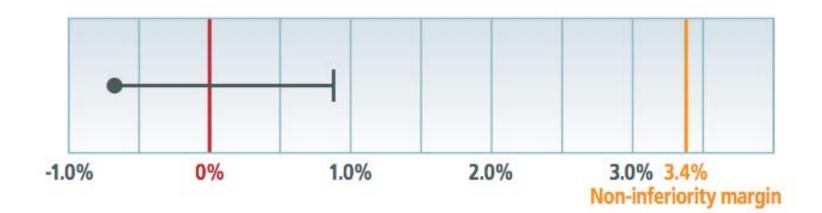
	EVEROLIMUS-ELUTING STENT	SIROLIMUS-ELUTING STENT	p value
No. of lesions treated per patient	1.23±0.51	1.23±0.48	0.7
No. of stent			
Per patient	1.51±0.78	1.48±0.74	0.25
Per lesion	1.23±0.61	1.21±0.56	0.32
Total stent lengh (mm)			
Per patient	31.0±19.1	31.4±18.9	0.62
Per lesion	25.9±15.3	26.3±15.3	0.42
Stent diameter (mm)	2.97±0.38	2.96±0.37	0.16
Direct stenting	26%	23%	0.01
Maximum inflation pressure (atm) 14.5±5.2	17.2±4.7	< 0.0001
Bifurcation 2-stent	4.8%	6.2%	0.39
IVUS use	81%	82%	0.44
Multivessel treatment	12%	10%	0.13
Staged Procedures	23%	25%	0.24

Baseline QCA Data

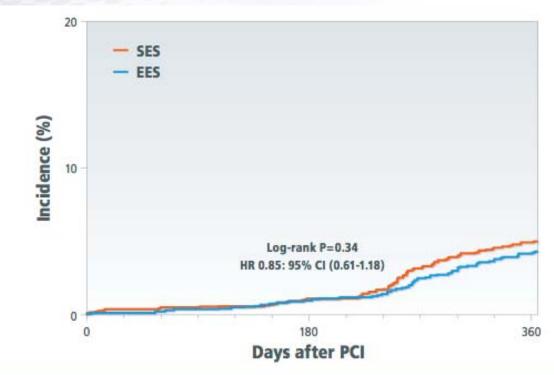
Variables – no. (%)	EES (1441 lesions)	SES (1475 lesions)	p value
Before procedure			
Lesion length – mm	16.7 ± 10.8	16.9 ± 10.7	0.53
Reference vessel diameter – mm	2.59±0.63	2.57±0.62	0.37
Minimal luminal diameter – mm	0.83 ± 0.48	0.81 ± 0.45	0.34
Diameter stenosis – %	68.5±16.2	68.8±15.8	0.71
Immediately after procedure			
Minimal luminal diameter – mm			
In stent	2.46 ± 0.49	2.45 ± 0.47	0.57
In segment	2.06 ± 0.55	2.03 ± 0.54	0.23
Diameter stenosis – %			
In segment	22.4±11.7	23.5±12.4	0.01
Acute gain – mm			
In stent	1.63 ± 0.54	1.63 ± 0.52	0.77
In segment	1.22 ± 0.58	1.22±0.56	0.83

Procedural Results

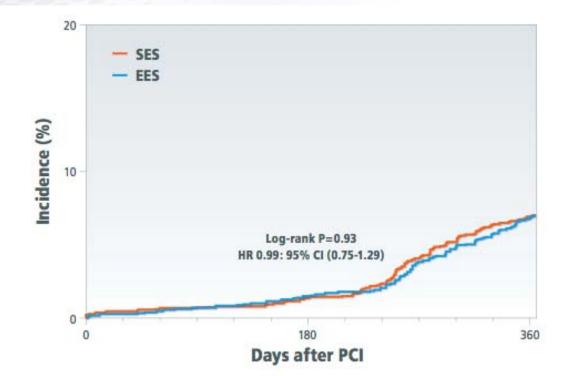
I	EVEROLIMUS-ELUTING STENT	SIROLIMUS-ELUTING STENT	p value
No. of lesions	1967	1960	
Acute device success	1895/1898 (99.8%)	1866/1875 (99.5%)	0.07
Successful stenting	1907/1908 (99.95%)	1895/1900 (99.7%)	0.09
Lesion Success	99.6%	99.0%	0.02
No. of patients	1597	1600	
At least one stented lesion	99.6%	99.1%	0.07
Treatment with study stent on	y 98.9%	98.0%	0.03
Patient success	97.8%	96.6%	0.04
Procedure duration (minutes)	68.0±40.3	69.4±45.2	0.36


Stent implantation was not attempted in 16 patients (EES: 5 patients, and SES: 11 patients) due to guidewire failure, undilatable lesions, or complications, etc.

Non-study stents were attempted without attempt of the study stent in 11 patients (EES: 4 patients, and SES: 7 patients). (Protocol violation)


EES 4.3% vs. SES 5.0% Pnon-inferiority < 0.0001

Difference: - 0.7% Upper one-sided 95% CI: 0.8%


Target-Lesion Revascularization

Interval	0 day	30 days	180 days	240 days	365 days
EES group					
N of events		2	16	22	65
N of patients at risk	1597	1583	1552	1534	1193
Incidence		0.1%	1.0%	1.4%	4.3%
SES group					
N of events		5	17	27	76
N of patients at risk	1600	1585	1547	1526	1193
Incidence		0.3%	1.1%	1.7%	5.0%

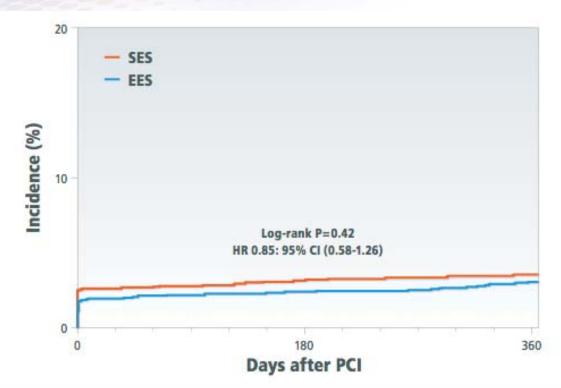
Target-Vessel Revascularization

Interval	0 day	30 days	180 days	240 days	365 days
EES group					
N of events		3	23	31	105
N of patients at risk	1597	1583	1546	1527	1161
Incidence		0.2%	1.5%	2.0%	6.9%
SES group					
N of events		6	21	36	106
N of patients at risk	1600	1585	1544	1517	1171
Incidence		0.4%	1.3%	2.3%	6.9%

Proportion of TLR/TVR Events Adjudicated by the Angiographic Core Laboratory

RESET

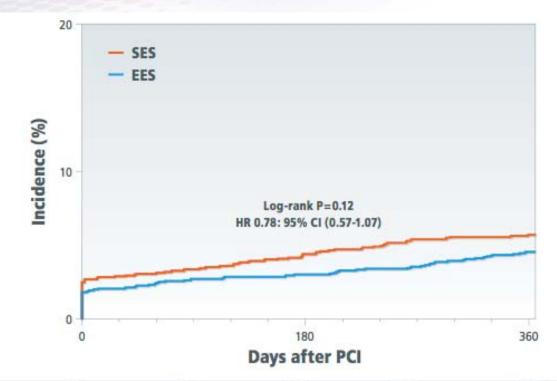
All the angiograms of patients with TVR were to be analyzed by the angiographic core laboratory in an attempt to discriminate TLR from non-TLR TVR and to identify clinically-driven TLR.



Interval	0 day	30 days	180 days	240 days	365 days
EES group					
N of events		3	13	20	30
N of patients at risk	1597	1585	1572	1563	1272
Incidence		0.2%	0.8%	1.3%	1.9%
SES group					
N of events		6	24	31	40
N of patients at risk	1600	1590	1569	1558	1271
Incidence		0.4%	1.5%	1.9%	2.5%

Myocardial Infarction

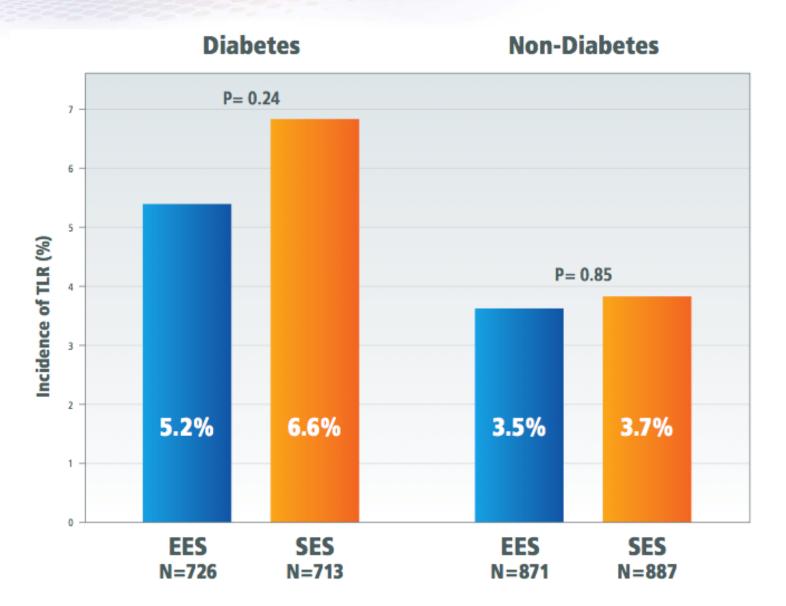
Interval	0 day	30 days	180 days	240 days	365 days
EES group					
N of events		30	38	38	47
N of patients at risk	1597	1555	1534	1523	1216
Incidence		1.9%	2.4%	2.4%	3.0%
SES group					
N of events		41	50	51	55
N of patients at risk	1600	1551	1517	1504	1210
Incidence		2.6%	3.1%	3.2%	3.5%


Definite/Probable Stent Thrombosis

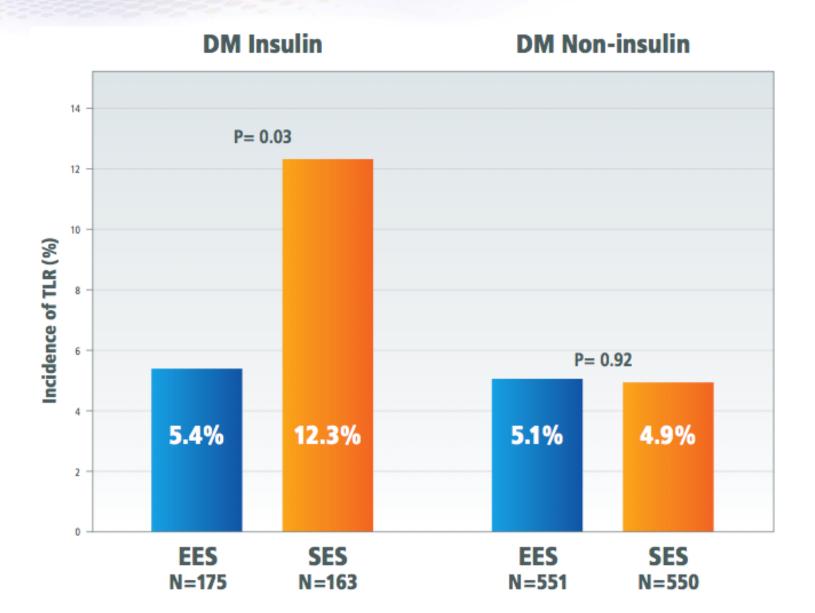
Interval	0 day	30 days	180 days	240 days	365 days
EES group					
N of events		2	4	4	6
N of patients at risk	1597	1583	1565	1553	1242
Incidence		0.13%	0.25%	0.25%	0.39%
SES group					
N of events		3	6	6	6
N of patients at risk	1600	1586	1559	1547	1239
Incidence		0.19%	0.38%	0.38%	0.38%

Death/Myocardial Infarction

Interval	0 day	30 days	180 days	240 days	365 days
EES group					
N of events		32	47	53	70
N of patients at risk	1597	1555	1534	1523	1216
Incidence		2.0%	3.0%	3.3%	4.5%
SES group					
N of events		45	69	77	89
N of patients at risk	1600	1551	1517	1504	1210
Incidence		2.8%	4.5%	4.8%	5.6%

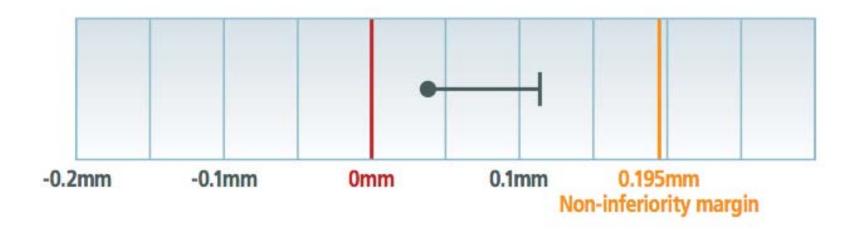


Pre-specified Subgroup Analysis for TLR EES versus SES

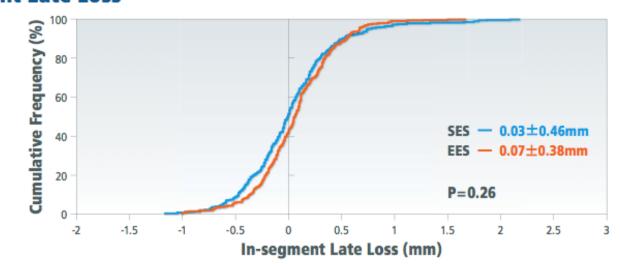

Subgroups	N (EES/SES)		H.R. 95% CI.	P Value
Diabetic Status				
Diabetes	(726/713)		0.77 (0.49-1.19)	0.24
Non-diabetes	(871/887)		0.95 (0.57-1.58)	0.85
Insulin use				
DM insulin	(175/163) 🔶	•	0.42 (0.18-0.9)	0.03
DM non-insulin	(551/550)	• • •	1.03 (0.6-1.77)	0.92
Elderly				
Age >= 75 years	(494/509)	• • •	1.15 (0.6-2.25)	0.66
Age < 75 years)	(1103/1091)	◆ ○ ◆	0.76 (0.51-1.11)	0.16
Hemodialysis				
Yes	(93/80)	• • •	0.73 (0.34-1.58)	0.43
No	(1504/1520)	◆ ○ ◆	0.84 (0.58-1.22)	0.36
Multivessel PCI				
Yes	(186/160) 🔶	•	0.52 (0.24-1.05)	0.07
No	(1411/1440)	◆ ○ ◆	0.95 (0.65-1.38)	0.77
	0.1	1.0	1	
	E	EES Better SES Bette	r	

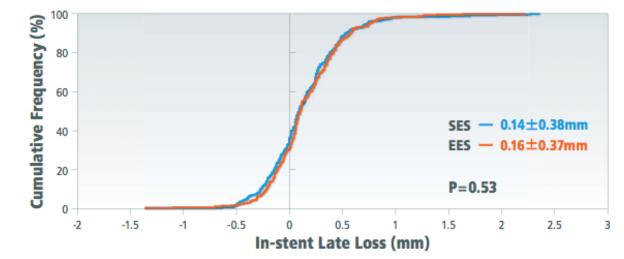
Impact of Diabetes on TLR

Impact of Insulin-treated Diabetes on TLR



Non-inferiority Assessment for the Primary Angiographic Endpoint In-segment Late Loss


> EES 0.07 mm vs. SES 0.03 mm P non-inferiority < 0.0001



In-segment Late Loss

In-stent Late Loss

Cypher[™] (SES) had already left the coronary DES arena. Therefore, the current trial result could not provide guidance regarding selection of coronary DES in clinical practice.

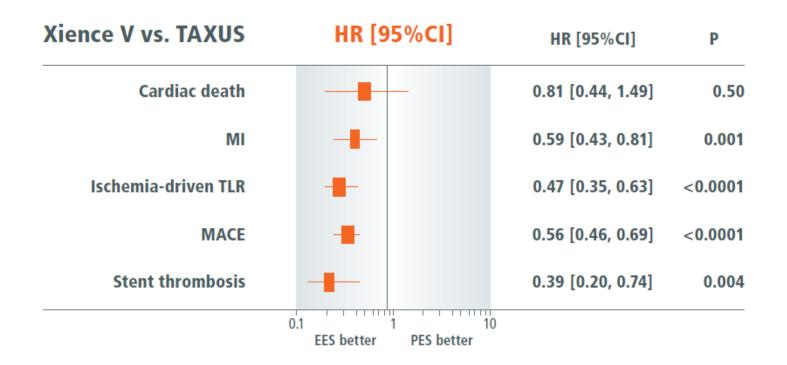
However, sirolimus-eluting stent (SES) was the most widely used and most extensively studied first generation DES. Clinical outcome after SES implantation should be regarded as the benchmark for the current and future generation drug-eluting stents.

Limitations and Implications

Despite the all-comers trial design, the study population actually enrolled seemed to represent relatively low-risk patients, resulting in event rates lower than anticipated. Furthermore, the trial strategy of evaluating only the index procedure also lead to the observed low TLR rates. TLR outcome favoring EES in the insulin-treated diabetic subgroup (one of the highest risk subset) is intriguing and hypothesis generating, although we should be very careful in interpreting the observation in the subgroup analysis.

In the DES versus DES trials, it might be difficult to demonstrate clinically meaningful differences in TLR rates among low risk patients. Future stent trials should focus more on complex patients, in whom coronary artery bypass grafting could be a reasonable alternative.

Conclusions


In this large scale randomized controlled trial comparing EES with SES, EES was demonstrated to be non-inferior to SES with respect to target-lesion revascularization rate at 1 year and angiographic in-segment late loss at 8-12 months.

- One-year clinical outcome after both EES- and SES-use was excellent with low rate of target-lesion revascularization and very low rate of stent thrombosis.
- Longer-term follow-up is important to address whether EES could positively affect the late adverse events beyond 1 year reported after SES implantation such as late restenosis and very late stent thrombosis.

Backgrounds

In the recent large randomized controlled trials comparing everolimus-eluting stent (EES) with paclitaxel-eluting stent (PES), EES demonstrated consistent clinical benefit over PES in terms of reduced rates of myocardial infarction, stent thrombosis, and target-lesion revascularization up to 2 years of follow-up.

Covariate adjusted 1-year outcomes in SPIRIT II, SPIRIT III, SPIRIT IV, COMPARE (N=6,789)

Definition and Adjudication of Endpoints

Target-lesion Revascularization

Either PCI or CABG due to restenosis or thrombosis of the target-lesion that included the proximal and distal edge segments as well as the ostium of the side branches.

A target-lesion was defined as the entire segment involving the implanted stent and the 5-mm proximal and distal edges adjacent to the stent. A segment to be treated with multiple overlapping stents was regarded as a single target segment.

Only those lesions treated at the time of the index PCI procedure were regarded as target-lesions, while those lesions treated at the time of scheduled staged PCI procedures were not regarded as target-lesions.

All the angiograms of patients with TVR were to be analyzed by the angiographic core laboratory in an attempt to discriminate TLR from non-TLR TVR and to identify clinically-driven TLR.

Secondary Endpoints

Secondary Endpoints for Device Performance:

Acute devise success (successful deployment of all the study stents attempted) Procedure duration (interval between insertion and removal of the guiding catheter)

Secondary Endpoints for Efficacy:

Clinically-driven target-lesion revascularization (TLR) Target-vessel revascularization (TVR) Any coronary revascularization

Secondary Endpoints for Safety:

Death, Cardiac death, Myocardial infarction, Stent thrombosis, Hospitalization for heart failure, Stroke, and Bleeding

Composite Endpoints:

A device-oriented composite: cardiac death, target vessel MI, or TLR A patient-oriented composite: death, MI, or any coronary revascularization

Clinically-driven TLR

A TLR was considered clinically indicated, if angiography during follow-up showed a diameter stenosis greater than or equal to 50 percent (core laboratory QCA assessment), and if one of the following occurred:

- (1) a positive history of recurrent angina pectoris, presumably related to the target vessel;
- (2) objective signs of ischemia at rest or during stress test;
- (3) abnormal results of any invasive functional diagnostic test (e.g. fractional flow reserve);
- (4) a TLR with a diameter stenosis greater than 70% even in the absence of the above-mentioned ischemic signs or symptoms.

Definition of Secondary Endpoints

Cardiac Death

Death w/o obvious non-cardiac causes or death during the index hospitalization

Myocardial Infarction and Stent Thrombosis

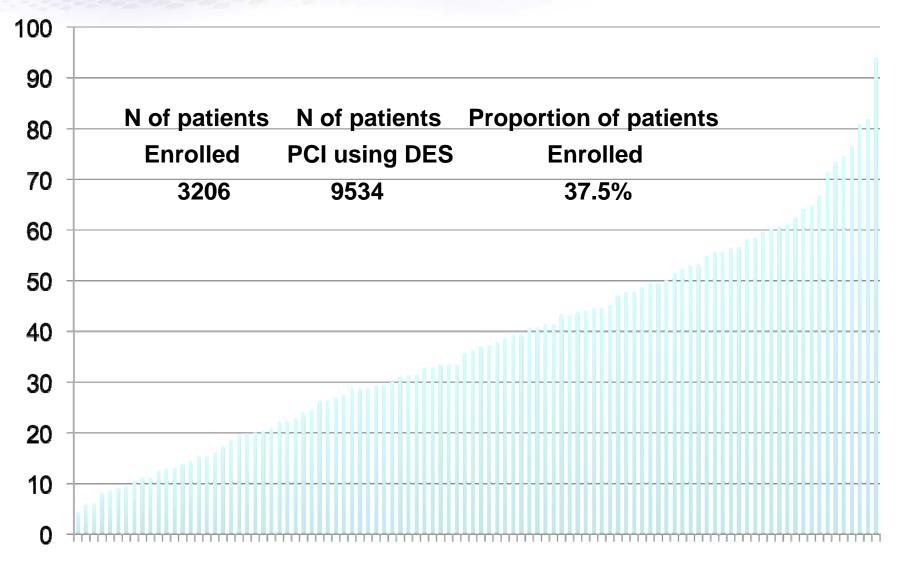
According to the Academic Research Consortium definitions Periprocedural MI; CKMB>= 3 times ULN or CK >= 3 times ULN in the absence of CKMB measurement

• Hospitalization for Heart Failure

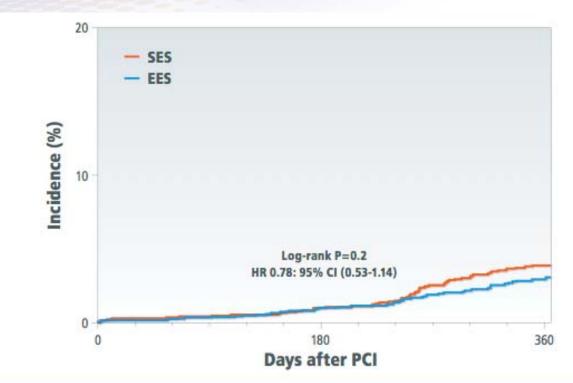
Hospitalization due to worsening heart failure requiring IV drug therapy

• Stroke

Ischemic or hemorrhagic stroke requiring hospitalization with Sx. lasting > 24 hour


• Bleeding

TIMI and GUSTO classifications

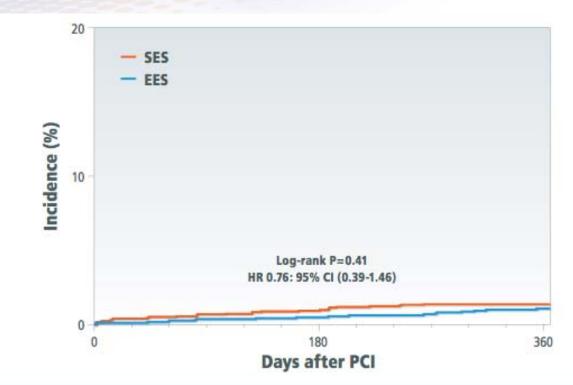

•Any Coronary Revascularization

Excluding scheduled staged PCI procedures declared at the index hospitalization

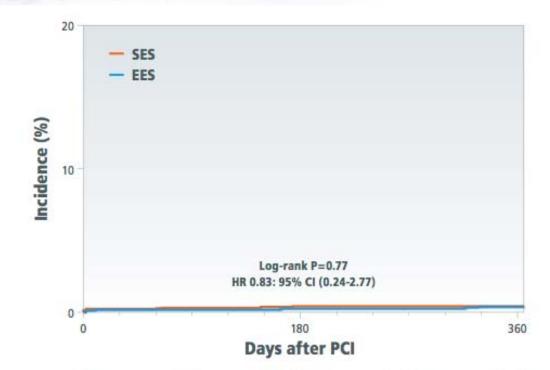
Proportion of Patients Enrolled in the RESET According to Participating Centers

Clinically-driven Target-Lesion Revascularization

Interval	0 day	30 days	180 days	240 days	365 days
EES group					
N of events		2	15	21	46
N of patients at risk	1597	1583	1552	1534	1193
Incidence		0.1%	1.0%	1.3%	3.0%
SES group					
N of events		4	16	23	59
N of patients at risk	1600	1586	1547	1526	1193
Incidence		0.3%	1.0%	1.5%	3.9%


Any Coronary Revascularization

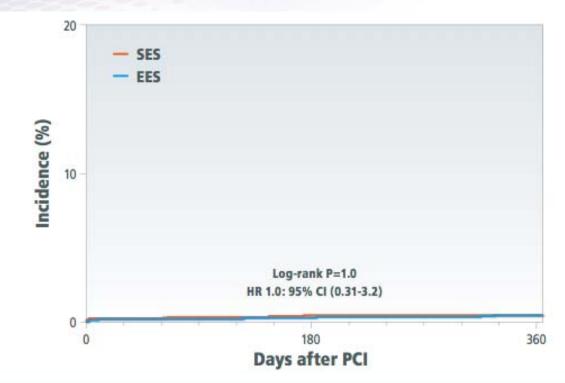
Interval	0 day	30 days	180 days	240 days	365 days
EES group					
N of events		4	35	54	178
N of patients at risk	1597	1581	1533	1503	1097
Incidence		0.3%	2.2%	3.4%	11.7%
SES group					
N of events		7	43	71	189
N of patients at risk	1600	1584	1522	1483	1113
Incidence		0.4%	2.7%	4.5%	12.3%


Cardiac Death

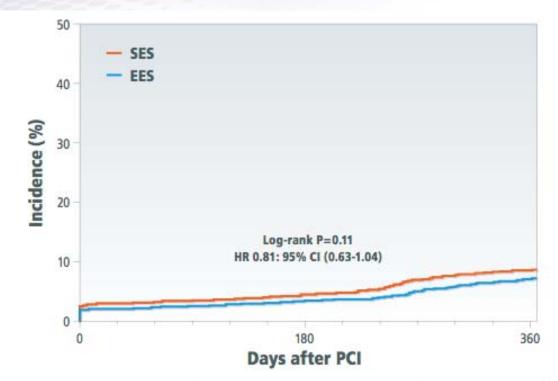
Interval	0 day	30 days	180 days	240 days	365 days
EES group					
N of events		1	7	9	16
N of patients at risk	1597	1585	1572	1563	1272
Incidence		0.1%	0.4%	0.6%	1.0%
SES group					
N of events		5	6	19	21
N of patients at risk	1600	1590	1569	1558	1271
Incidence		0.3%	0.9%	1.2%	1.3%

Definite Stent Thrombosis

Interval	0 day	30 days	180 days	240 days	365 days
EES group					
N of events		2	3	3	5
N of patients at risk	1597	1583	1565	1553	1242
Incidence		0.13%	0.19%	0.19%	0.32%
SES group					
N of events		3	6	53	6
N of patients at risk	1600	1588	1559	1547	1246
Incidence		0.19%	0.38%	0.38%	0.38%


Definite Stent Thrombosis

Interval	0 day	30 days	180 days	240 days	365 days
EES group					
N of events		2	3	3	5
N of patients at risk	1597	1583	1565	1553	1242
Incidence		0.13%	0.19%	0.19%	0.32%
SES group					
N of events		3	6	53	6
N of patients at risk	1600	1588	1559	1547	1246
Incidence		0.19%	0.38%	0.38%	0.38%



Definite/Probable Stent Thrombosis

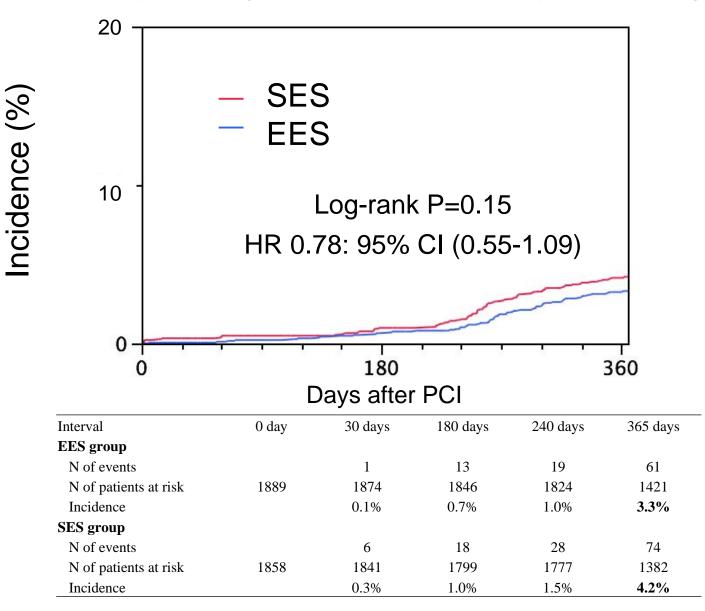
Interval	0 day	30 days	180 days	240 days	365 days
EES group					
N of events		2	4	4	6
N of patients at risk	1597	1583	1565	1553	1242
Incidence		0.13%	0.25%	0.25%	0.39%
SES group					
N of events		3	6	6	6
N of patients at risk	1600	1586	1559	1547	1239
Incidence		0.19%	0.38%	0.38%	0.38%

A device-oriented composite Cardiac death, Target vessel MI, or TLR

Interval	0 day	30 days	180 days	240 days	365 days
EES group					
N of events		32	53	61	110
N of patients at risk	1597	1555	1525	1507	1173
Incidence		2.0%	3.3%	3.8%	7.1%
SES group					
N of events		47	70	84	134
N of patients at risk	1600	1547	1507	1486	1162
Incidence		2.9%	4.4%	5.3%	8.5%

A patient-oriented composite Death, MI, or Any Coronary Revascularization

Interval	0 day	30 days	180 days	240 days	365 days
EES group					
N of events		35	74	99	231
N of patients at risk	1597	1553	1508	1479	1079
Incidence		2.2%	4.7%	6.2%	14.9%
SES group					
N of events		50	105	140	262
N of patients at risk	1600	1546	1483	1443	1084
Incidence		3.1%	6.6%	8.8%	16.7%


Follow-up QCA Data in Angiographic Sub-study

Variables – no. (%)	EES (261 lesions)	SES (276 lesions)	p value
Follow-up at 9 months			
Minimal luminal diameter – mm			
In stent	2.34±0.52	2.34±0.49	0.87
In segment	1.99±0.52	2.04±0.52	0.24
Diameter stenosis – %			
In stent	14.3±11.3	15.0 ± 12.7	0.52
In segment	24.4±13.6	23.8±14.6	0.64
Late luminal loss – mm			
In stent	0.16 ± 0.37	0.14 ± 0.38	0.53
In segment	0.07 ± 0.38	0.03 ± 0.46	0.26
Binary restenosis – %			
In segment	13 (5.0)	11 (4.0)	0.58
Restenosis pattern – %			0.46
Focal	9 (69)	8 (67)	
Diffuse	4 (31)	3 (25)	
Total occlusion	0	1 (8.3)	

Target-Lesion Revascularization

RESET

Lesion-based Analysis Among Lesions Treated Exclusively With the Assigned Stents

